
【解答】(Ⅰ)解:f(x)=32sin2x+1+83cos2x+2=96sin2x+3+166cos2x+4
=113[(6sin2x+3)+(6cos2x+4)](96sin2x+3+166cos2x+4)≥113•(3+4)2=4913,
当且仅当tanx=±32时取等号,函数取得最小值为4913;
(Ⅱ)证明:∵m,n∈R,a,b∈R+,n2m2>a2m2+b2n2,
∴1>a2n2+b2m2,
∴m2+n2>(a2n2+b2m2)(m2+n2)>(a+b)2,
∴m2+n2>a+b.

【解答】(Ⅰ)解:f(x)=32sin2x+1+83cos2x+2=96sin2x+3+166cos2x+4
=113[(6sin2x+3)+(6cos2x+4)](96sin2x+3+166cos2x+4)≥113•(3+4)2=4913,
当且仅当tanx=±32时取等号,函数取得最小值为4913;
(Ⅱ)证明:∵m,n∈R,a,b∈R+,n2m2>a2m2+b2n2,
∴1>a2n2+b2m2,
∴m2+n2>(a2n2+b2m2)(m2+n2)>(a+b)2,
∴m2+n2>a+b.